Quantifying distinct associations on different temporal scales: comparison of DCCA and Pearson methods
نویسندگان
چکیده
Cross-correlation between pairs of variables takes multi-time scale characteristic, and it can be totally different on different time scales (changing from positive correlation to negative one), e.g., the associations between mean air temperature and relative humidity over regions to the east of Taihang mountain in China. Therefore, how to correctly unveil these correlations on different time scales is really of great importance since we actually do not know if the correlation varies with scales in advance. Here, we compare two methods, i.e. Detrended Cross-Correlation Analysis (DCCA for short) and Pearson correlation, in quantifying scale-dependent correlations directly to raw observed records and artificially generated sequences with known cross-correlation features. Studies show that 1) DCCA related methods can indeed quantify scale-dependent correlations, but not Pearson method; 2) the correlation features from DCCA related methods are robust to contaminated noises, however, the results from Pearson method are sensitive to noise; 3) the scale-dependent correlation results from DCCA related methods are robust to the amplitude ratio between slow and fast components, while Pearson method may be sensitive to the amplitude ratio. All these features indicate that DCCA related methods take some advantages in correctly quantifying scale-dependent correlations, which results from different physical processes.
منابع مشابه
A novel way to detect correlations on multi-time scales, with temporal evolution and for multi-variables
In this paper, two new methods, Temporal evolution of Detrended Cross-Correlation Analysis (TDCCA) and Temporal evolution of Detrended Partial-Cross-Correlation Analysis (TDPCCA), are proposed by generalizing DCCA and DPCCA. Applying TDCCA/TDPCCA, it is possible to study correlations on multi-time scales and over different periods. To illustrate their properties, we used two climatological exam...
متن کاملکاربرد سنجش از دور چند زمانی در تعیین سطح زیرکشت
Precision farming aims to optimize field-level management by providing information on production rate, crop needs, nutrients, pest/disease control, environmental contamination, timing of field practices, soil organic matter and irrigation. Remote sensing and GIS have made huge impacts on agricultural industry by monitoring and managing agricultural lands. Using vegetation indices have been wide...
متن کاملDetrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations.
The detrended cross-correlation coefficient ρ(DCCA) has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation a...
متن کاملApplying a climatologically oriented GIS in comparison of TRMM estimated severe thunderstorm rainfalls with ground truth in Sydney metropolitan area
The main objective of the current research was comparison of severe thunderstorm rainfalls with TRMM data when flash flooding events observed in the Sydney Metropolitan Area (SMA) located in NSW, Australia. Severe Thunderstorm Rainfall Events have been first extracted from the severe storm archive of the Australian BOM, by induction of specific criteria. The corresponded derived dataset includ...
متن کاملComparison of Two Spectrophotometric Methods for Quantifying Total Hydroxycinnamic Acids in Coneflower (Echinacea purpurea) Preparations
Background & Aim: Hydroxycinnamic acids are one of the most important bioactive substances of Echinacea drugs. These compounds possess immuno-enhancing activity and thus, total hydroxycinnamic acids are mostly used as the main criterion for quality control of Echinacea purpurea and its drugs. Hence, the quality control of Echinacea requires to develo...
متن کامل